来自 数据库 2020-04-30 00:00 的文章
当前位置: 澳门三合彩票 > 数据库 > 正文

但对此工业4.0或成立创设,成为工业物联网的实

有别于一般消费性市场需求,在工业生产制造领域的发展上,不仅有强调以工业应用为主的工业人工智能,在数据数据的搜集上,自然也有所谓的工业大数据。

在区块链、机器视觉、语音技术、机器学习等技术的助力下,制造业+人工智能将沿着“数字化”、“网络化”、“智能化”三阶段发展,造就一个全新的智能制造产业;将为设备企业、软件与服务企业、通信与解决方案提供商、工厂生产流程等带来新的结构性机会。

机器学习算法对于制程中会遇到的实时问题反应与控制指令回馈会缓不济急,近两年边缘运算概念兴起,成为工业物联网的实时性问题的最佳答案。

以工业4.0为核心的智能制造,已经成为目前全球制造业者共同发展的方向。有别于一般消费性市场需求,在工业生产制造领域的发展上,不仅有强调以工业应用为主的工业人工智能,在数据数据的搜集上,自然也有所谓的工业大数据。做为工业人工智能的基础,怎样获取正确的工业大数据,也关系着制造业转型升级的成败。

中国是世界上最大的制造业大国,制造业与人工智能的结合是中国从制造大国走向制造强国的重要一步,是中国直面国内国际挑战的重要超车机遇。制造业与人工智能的结合,是解决中国人口老龄化,制造业由于装备和软硬件平台依赖进口所面临的缺乏创新平台自动化自主程度较低、制造业外移、制造业仍然处于价值链低端, 劳动生产率较低等问题的重要手段。

1969年PLC问世后,自动化技术在制造领域逐渐站稳脚步,如今已是全球制造系统的核心架构,由于制造系统讲究稳定,因此对新技术、新架构的接受速度向来缓慢,不过近年来消费市场快速变动,对全球制造业带来严峻挑战, 导入智能化架构成为业者永续经营的必要策略,而在新世代的制造系统中,工业物联网不仅成为核心架构,更会与AI结合,落实智能化愿景。

除了与一般大数据以强调数量(Volume)、速度(Velocity)、多样性(Variety),及真实性(Veracity)的4V要素之外,工业大数据还特别强调所谓的可见性(Visibility)及价值(Value)。对于大数据及工业大数据之间的差异,一般认为,数据的数量、获取的速度/频率、数据的多样性与真实性,是制造业在导入数字化与自动化之后,会自然演化出现的数据。但对于工业4.0或制造制造,要从设备制造端向使用者服务端的转型而言,可见性及价值,则代表了对工业大数据所追求的目的与意义。

短期内,人工智能与工业机器人在制造业落地迅速发展,人工智能协同机器人将解放大量重复、规则的人类劳动。中长期内,伴随工业互联网的成熟,机器之间、工厂之间得以智能化互联互通,区块链技术的加入更使得制造业“全自动运行”成为可能,“人工智能+机器人+区块链”模式值得期待。长期看,制造业与服务业将深度融合,标准化生产与个性化定制并存,智能制造为人们构筑美好生活提供畅想空间。一、智能制造产业化基本特征

所有场域应用的物联网,其架构都相同,都是由传感器、通讯网络与云端管理平台所组成的3层架构,由传感器撷取设备数据,再经由通讯网络传送到上层云端平台储存、运算,最后再以分析出来的数据作为系统运作的决策参考,而在整体架构中, AI过去多被建置在上层的云端平台,透过强大的机器学习算法,分析由终端感测层传回的海量数据。

不过数字转型及产业升级的风潮,很多制造业者在着手进行往智能制造转型的过程中,是伴随着数字化与自动化同步进行,由于数字化与自动化之后,机台设备可以快速的产生大量数据,业者如果没有完整个规划或从事阶段性的建设,很容易在初期就走错方向。

智能制造特征主要有四个方面:以智能工厂为载体、以生产关键制造环节智能化为核心、以端到端数据流为基础、以全面深度互联为支撑。其中生产智能化、数据交流以及制造本体深度互联,正是工业互联网所要解决的核心问题。

不过,机器学习算法需要一定的运算时间,其目的也多在解决制造业类似像是制程排程优化的长时间问题,对于制程中会遇到的实时问题反应与控制指令回馈会缓不济急,近两年边缘运算概念兴起,成为工业物联网的实时性问题的最佳答案。

相关业者表示,一般的商业大数据可以在累积大量数据数据后,再固定或周期性的进行数据的处理与分析;但是智能制造要能创造价值,最佳的方式则是必须要将相关的工业大数据,就近的在机台设备端,进行实时的分析处理,并且执行反馈。同时,也需要将这些实时处理分析的结果进行视觉化的展示。

随着多项技术的不断成熟和实际应用,人工智能应用领域不断拓展,制造业企业的商业世界将会被实质性地影响和改变, 并在以下三个层面得到实质性的提升:

上层AI多用于长期规划

业者表示,工业大数据与一般商业大数据的一项重要差异,就在于对于精准度的要求。对一般商业场域中应用的大数据及人工智能而言,准确率能达到90%左右,就已经将惊人,因为对消费者的年龄判别失准,或是推播了错误的广告,一般并不会造成太大的影响;不过,如果应用在工业生产领域,工业大数据结合工业人工智能被要求的准确度,可能是需要到99.9%甚至更高的准确率,因为一旦工业生产制造上的数据出现误差,对于产品后续生产各方面,都将带来难以估计的损失。

1.自动化达到新高度。随着机器视觉、语音识别、自然语言理解等感知类技术不断成熟,各行业已尝试将其引入标准化程度较高的业务中,提升行业的自动化水平。

边缘运算的做法是让终端设备具有一定的运算能力,具有边缘运算设计的工业物联网架构,必须先建立起一套数据流模式,当传感器撷取到设备的状态数据后,就将数据传送到通讯层的网关,网关再依照系统建构时的设定让数据分流, 需要实时处理数据传送到前端控制器,让自动化设备可以快速反应,需要储存累绩为长期数据的数据,则送往数据库储存,上层再透过运算平台分析出结果,提供管理者作为决策参考,因此现在完整的工业物联网, 其AI会被分别设计在会有终端与云端两部分,让分布式与集中式运算在架构中并存,彼此各司所职。

也因为工业大数据需要就近进行高速而精准的分析与处理,因此,在智能制造风潮崛起之际,连带掀起了对边缘运算架构的需求。相关业者指出,就近在机台设备端收集的工业大数据,先将必须优先处理反馈的部分进行分析处理,不仅可以达到快速反应的目的,同时也可以将数据量有效的缩减,对之后传输、储存等部分也都会相对较为有利。

图像识别和语音识别技术的发展提高了身份验证的自动化程度和准确度,机器可以利用面部和声音进行身份验证,效率远高于人工判断或询问验证问题。

再从设备供应端在工业物联网的研究议题来看,现在主要是集中在4个方向,包括生产系统、产品质量、制程优化与数字建模。 在这4大方向中,各有其需要解决的问题,像是生产系统中,设备的状态感测、监控与预诊,产品质量的检测、预测,制程优化的参数设定、能源运用,数字建模的数字双生平泰建立等,透过工业物联网的数据撷取与分析,将可逐步解决这些问题, 提升系统整体效能。

就制造业转型智能制造,相关业者认为,从现场的数据采集规划开始、边缘运算架构的搭建,一直到完整解决方案的提供,如果没有工业大数据支撑,结果可能会有极大的差异。当然,相关业者不否认,智能制造的规模若再进一步的发展后,工业大数据的范围一方面将持续扩大,但同时对于数据来源则将持续细化,即便如此,工业大数据在智能制造转型上扮演的角色越来越重要。

2.智能分析与决策水平提升。人工智能的发展使数据挖掘和分析技术跳出了传统分析技术的局限,并取得了新的突破,大幅度提高了商业智能的水平,在风险管理、营销和服务等领域实现真正的“智能化”,具体表现包括基于社交媒体生产信用评分、财务数据分析与评论、从实时复杂交易模式中发现欺诈等。

在工业物联网中,AI主要用来做制程的优化与长期规画等非实时性决策,例如现在消费性市场的产品类别多样,制程系统的换线将成为常态,透过大数据与AI的运算,就可尽量缩短换线生产的停机时间,让排程优化。

责任编辑:焦旭

3.新的商业模式与新产业诞生。在需求端,传统行业逐渐意识到了人工智能的力量,开始将人工智能作为下一个增长点。

进行产线排程时,需从机器环境、制程加工特性与限制、排程目标,依据工作到达达生产现场的情况区分,可分静态及动态排程两种,静态排程是到达生产现场时,其制造数目?固定且可一次完成的任务进行排程,后续如果出现新工作, 再并入下一次制程处理。 动态排程则是若制程连续、产品随机,而且数目不固定的到达生产现场,须不断的更新生?排程。

在供给端,逐渐形成供给人工智能技术服务及产品的新产业,市场中出现大量的计算机视觉、语音识别、云计算服务等提供商。基础层、技术与算法层与应用层均有众多供给企业诞生,同时,横跨各层次的综合性巨头与机器人、无人驾驶等垂直领域解决方案提供商实力凸显。二、智能制造业催生新的未来智能产业

就上述两种排程方式来看,静态排程通常为少样多样方式,AI在其中要解决的问题,主要是透过深度学习算法分析各环节的时间与质量,不断的改进工序,让效能与质量优化;动态排程则用于少量多样生产,AI会针对不同产品的工序, 建立起换线模式,有不同产品上线时,即启动专属换线模式,尽量缩短停机时间,同时让产品维持固定质量。

在区块链、机器视觉、语音技术、机器学习等技术的助力下,制造业+人工智能将沿着“数字化”、“网络化”、“智能化”三阶段发展,造就一个全新的产业。为设备企业、软件与服务企业、通信与解决方案提供商、工厂生产流程等都带来新的结构性机会。

边缘运算效益可快速浮现

澳门三合彩票 1

由于工业物联网上层的AI建置,效益需要一段时间才浮现,不会是立竿见影的发生,而且对制造业者来说并非当务之急,因此目前投入者大多为大型制造业,中小规模的业者,则以底层的边缘运算为主。

1.产生新型的设备企业。 人工智能等新兴技术在制造业中的应用催生了多种新型硬件设备,如自动光学检测、自动引导运输车、激光打标机、协作机器人等,为硬件设备制造企业带来新的产品细分市场:

目前中小企业的工业物联网建置,制造设备的预知保养与制程检测仍是两大主要功能,由于设备的无预警停机,将会造成整体产线停摆,轻则产在线的半成品报废,重则交期延宕影响商誉,设备保养过去多采人工记录方式,人员再按照时间维护, 不过这种方式除了有可能因人员疏失或懈怠,未能定时作业外,设备也有可能在未达维护时间时故障。

澳门三合彩票,例如,自动光学检测机器通过摄像头自动扫描PCB,采集图像,测试的焊点与数据库中的合格的参数进行比较,经过图像处理,检查缺陷,并通过显示器或自动标志把缺陷显示/标示出来,供维修人员修整。

工业物联网中的设备预知保养可分两类,一种是直接在管理系统上设计提醒功能,主动告知相关人员维修时间,另一种则是由传感器侦测设备状态,若是出现异常,AI则会依据出现的状态频率,判断可能发生的情况,再做不同处理, 例如传感器发现马达的震动,有可能是轴心歪斜,系统会依据震动的大小与频率判断马达现在的状态,如果有可能会立即损坏,就马上告知设备维护人员停机更换,如果没有立即危险,则会让马达持续运作,并记录该马达的状况, 让管理人员自行决定维护时间,让产线可以维持稳定的运作效能。

自动导引运输车等仓储机器人在行进过程中,通过机器视觉来判断行进路线、物料位置、周围环境等重要信息,可以跨流程、跨产线、跨区域、跨部门运输物料、半成品和产品,实现生产流程柔性化,在自动化物流系统中充分地体现其自动性和柔性,实现高效、经济、灵活的无人化生产。

边缘运算的另一种主要功能是制程检测,从目前AI的发展来看,图像处理占有70%以上的应用,在工业物联网架构中也是如此。 过去制程中多靠人眼检测产品质量,由于人眼容易疲劳,随着工作时间的拉长,检测质量会逐渐降低,再者,部分消费性产品的体积越来越小,产线速度越来越快,人眼已难以负荷,现在已被取代机器视觉所取代。

本文由澳门三合彩票发布于数据库,转载请注明出处:但对此工业4.0或成立创设,成为工业物联网的实

关键词: